This course will be centered on the relations between molecular biology and evolutionary theory and ecology, shifting concepts of the gene, and molecular phylogenetics.

Assessment:
- Test: 20%
- Research Proposal: 10%
- Group presentation: 20%
- Essay: 50%. Due: December 1

REMEDIATION ASSESSEMENT. No obligatory presentations, final essay 70%.

A 2% penalty will be applied each day to all work submitted after due dates (non-negotiable without a medical note). Work will not be accepted more than one week beyond the due date. Up to 10% of final mark will be deducted for lack of class attendance and participation. 5% deducted for two classes missed; 10% for three classes missed.

Proposals: Assessment will be based on formulation of the research question, brief discussion of its significance, how it will be investigated, and an indicative bibliography. Two double spaced pages plus bibliography.

Presentation: Assessment will be based on the organization, oral and visual presentation of the research. 60 minutes per group plus 15 minutes for discussion. 10% will be deducted for presentations exceeding the allotted length of time.

Essay: Length 2500 words per student: Essays will be assessed according to the following criteria:
- identification, understanding, and analysis of primary sources.
- ability to locate the topic within its larger historical setting
- organisation of argument and structure
- awareness of limits to knowledge
- style and overall presentation
Classes:
September 8: introduction and
September 15 the rise of classical molecular biology and beyond
September 22: molecular phylogenetics
September 29: holiday
October 6: symbiosis and lateral gene transfer, proposals due

October 13: Thanksgiving

October 20: test questions assigned Sept 22.

October 27: workshop

November 3

November 10
Wolbachia Molecular Ecology

November 17
The RNA World Circadian rhythms

November 24
The Histone Code Viruses and Introns

December 1
Hybridization Microbial Ecology

The Neutral Theory of Molecular Evolution