Faculty of Science professors awarded prestigious CFI research awards
Congratulations to Faculty of Science researchers Ryan Hili, John McDermott, Gary Sweeney and Cora Young for receiving awards from the Canadian Foundation for Innovation’s (CFI) John R. Evans Leaders Fund (JELF). They were among 10 professors at York University to receive these prestigious awards. Read the full story in yFile.
Ryan Hili – Expanding the Chemistry of DNA ($114,626)
Hili’s research focuses on technologies that harness the replicative and encoding power of DNA toward the evolution and discovery of novel molecules capable of serving a range of functions, including artificial antibodies for biomedical research and small molecule catalyst for synthesis of fine chemicals. The infrastructure funding will provide equipment that will enable rapid custom synthesis of DNA, the rapid purification of DNA, monitor the evolution and study the results. Artificial antibodies generated through his research will be used to elucidate protein and carbohydrate function in disease, and implemented in diagnostics screens for biomarkers implicated in human disease; this will directly benefit the health of Canadians and maintain Canada’s competitiveness in biomedical research. The proposed research will also serve to develop new green screening technologies for discovery of catalysts, which can be used to bring fine chemicals to Canadian markets at lower cost and with decreased environmental impact.
John McDermott – Fluorescence-Activated Cell Sorting for Muscle Cell Characterization and Purification ($200,920)
Aging primarily concerns organ function, where degenerative changes in organ systems can lead to diseases that limit both the quality and span of life. Heart disease is a major cause of death in Canada and globally. Muscle loss due to cancer drains patients of their energy, quality of life and independence due to a loss of functional muscle mass and mobility. McDermott will receive funding for a fluorescence-activated cell sorting (FACS) system to support research related to muscle development, skeletal muscle loss associated with aging and cancer, and heart disease. He will investigate the role of specific proteins, known as transcription factors, that precisely control gene regulation of skeletal muscle and heart development. The FACS system will yield high quality, purified heart and skeletal muscle cells. The research will provide new knowledge into how heart and skeletal muscle cells grow and mature, treat heart and skeletal muscle diseases and lead to novel strategies to engineer new tissue or drug treatments.
Gary Sweeney – Investigation of mechanisms responsible for diabetes and heart ($180,270)
There is an established correlation between obesity and metabolic complications in skeletal muscle leading to diabetes and in the heart leading to heart failure. Muscle is the most important tissue in the body for dealing with ingested glucose and if it does not properly contribute to glucose control, then diabetes will develop. The heart must metabolize nutritional fuels to maintain pumping. Previous studies have shown that inflammation is involved in causing dysfunction of muscle and heart, but the mechanisms responsible for regulating these changes have yet to be fully determined. Sweeney’s research focuses on a cellular process called autophagy believed to be required for good housekeeping in muscle and the heart. This project will examine the interaction between innate immunity and autophagy to unravel new pathways via which metabolic dysfunction occurs in obesity to provide new knowledge on mechanisms of obesity-related, immune-metabolic dysfunction.
Cora Young – Adaptable liquid chromatography system for online and offline analysis of trace atmospheric water-soluble compounds ($138,555)
Better understanding of environmental problems caused by pollution, including pollutant fate, air quality, and climate change, are necessary to protect human and environmental health. Study of these problems is limited by the measurements possible with existing methods. The requested unique, state-of-the-science instrumentation will allow development of new measurement methods for several pollutants that harm the environment. These new methods will be used to address gaps in our knowledge of the fate and transport of endocrine disrupting chemicals, sources of air pollution, and drivers of climate change through a combination of laboratory experiments and environmental measurements. The information gained from these studies will allow Canadian policy makers to better understand and predict the negative impacts of pollution and provide the basis for improved regulation.
Back to Research News